Entry under quality uncertainty: lessons from supermarkets

Andrés Gomez-Lobo Juan Luis Jiménez Jordi Perdiguero

Universidad de Chile

Universidad de Las Palmas de Gran Canaria

Universidad de Barcelona

Competition and strategies in the retailing industry INRA-IDEI Seminar. Toulouse. May 2011

Contents

- Motivation
- Literature review
- Model
- Empirical approach
 - Database and sample
 - Descriptive analysis
 - Estimations
- Conclusions

Motivation

The usual regulation policy of entry barriers

- Entry barriers in supermarket industry is a common policy.
- Effects of entry regulation? Based on "european" vision of Competition Policy (equity vs efficiency).
- Canary Islands (Spanish autonomous community) have developed own legal restrictions on retail entry (based on population and surface area of incumbents).
- A German hard discount (LIDL) entered in this market

Main objective: (how)has LIDL changed prices in this industry?

Motivation

WhyisthereanuncertaintybyLIDL'sentry?

- LIDL wanted to enter in Canary Islands but.....itneededtofighta legal battle. Five years later, LIDL won.
- To placate local sensitivities, LIDL announced (in 2006) that it might enter as a traditional supermarket rather than a hard discount one.
- For incumbents there was <u>uncertainty</u> as to the characteristics and product variety that the future entrant would offer.
- Finally, LIDL enter (2010) as a hard discount one, but it does not offer all products.

Supermarket industry

Literaturereview

- Decissiontoentry(Cotterill and Haller, 1992; Daunfelt et al, 2010)
- Entrybarriers and prices(Griffith and Harmgart, 2008)
- Employment(Bertrand and Kramarz, 2008; Griffith and Harmgart, 2008)
- Dynamic of entry(Foster et al, 2006)
- Effects of mergers(Nishida, 2008; Gómez-Lobo and González, 2009)
- Wal-Mart: effectsonlabour, exits, localizationorprices(Basker, 2005a; Matsa, 2009; Jia, 2008, Zhu and Singh, 2009; Basker, 2005b; Hausman and Leibteg, 2007; Basker and Noel, 2009)

Supermarket industry

Literaturereview (2)

• Entry'seffectsonprices:

Author	Country	Year	Entry's effect on prices
Basker (2005b)	$\overline{\text{USA}}$	1982-2002	1.5%/3% (s.r.) 7%/13% (l.r.)
Hausman and Leibteg (2007)	USA	1998-2003	25%*
Liria, Rivero and Vergara (2007)	Chile	1998-2004	7%- $11%$
Basker and Noel (2009)	USA	2001-2004	1%-1.2%
Abe and Kawaguchi (2010)	Japan	2000-2007	0.4%- $3.1%$

Moderate price reductions after new competitor entry

Model

Entrantunderqualityuncertainty: periods

 t_0 Entrantannouncesitsentrydecision (LIDL won legal battle).

Interimperiod: theincumbent decide pricetocharge (customerfidelity and crediblethreat). Incumbentdoesn'tknowwhatproductsentrantwilloffer.

incumbent **Entrant** and compete in t_2 priceswithdifferentiatedproducts(A, B). Incumbent'sbenefitsdependsonprices in t₁. Demandandcostofsupplyingproduct and are MotivationLiterature review **Model** Empirical approach Conclusions

independent

Model (2)

Pricing decision

Pricingdecision of theincumbentifthereis no entry

- Incumbentsmaximize:

$$\pi = \pi_{\mathcal{A}}^{1} \left(\boldsymbol{\rho}_{\mathcal{A}}^{1} \right) + \pi_{\mathcal{B}}^{1} \left(\boldsymbol{\rho}_{\mathcal{B}}^{1} \right) + \delta \cdot \left[\overline{\pi}_{\mathcal{A}}^{2} \left(\boldsymbol{\rho}_{\mathcal{A}}^{1} \right) + \overline{\pi}_{\mathcal{B}}^{2} \left(\boldsymbol{\rho}_{\mathcal{B}}^{1} \right) \right]$$

- Nomenclature: 1,2.- Period; A,B are products; π istheprofit of theincumbent; δ isdiscount factor.
- Customerfidelityimplies that: $\frac{\delta \overline{\pi}_{j}^{2}}{\delta \rho_{j}^{1}} < 0$

Result:
$$\frac{\delta \pi_{j}^{1}}{\delta \rho_{j}^{1}} \left(\tilde{\rho}_{j}^{1} \right) > \frac{\delta \pi_{j}^{1}}{\delta \rho_{j}^{1}} \left(\tilde{\rho}_{j}^{1} \right) + \delta \cdot \frac{\delta \overline{\pi}_{j}^{2}}{\delta \rho_{j}^{1}} \left(\tilde{\rho}_{j}^{1} \right) = 0$$

Model (3)

Pricing decision

Pricingdecision of theincumbentifthereisentry

- Incumbentmaximizes:

$$\pi = \pi_A^1 \left(\mathbf{p}_A^1 \right) + \delta \cdot \pi \mathbf{d}_A^2 \left(\mathbf{p}_A^1 \right) + \delta \cdot \left[\alpha \cdot \overline{\pi}_B^2 \left(\mathbf{p}_B^1 \right) + \left(1 - \alpha \right) \cdot \pi \mathbf{d}_B^2 \left(\mathbf{p}_B^1 \right) \right]$$

- Nomenclature: α probabilityentrantwillsellonlyproducts A.
- Fromf.o.c. ($\frac{\delta\pi}{\delta\,\rho_{_{A}}^{^{1}}}$ and $\frac{\delta\pi}{\delta\,\rho_{_{B}}^{^{1}}}$), we obtain two results (next slide):

Model (4)

Pricing decision

Pricingdecision of theincumbentifthereisentry (2)

-Pricesfor A (anditisthesameforB)withentrywill be lowerthanwithoutentryif :

$$\frac{\delta\pi \, \boldsymbol{\mathcal{O}}_{\mathcal{A}}^{2}}{\delta \, \boldsymbol{\mathcal{p}}_{\mathcal{A}}^{1}} < \frac{\delta\overline{\pi}_{\mathcal{A}}^{2}}{\delta \, \boldsymbol{\mathcal{p}}_{\mathcal{A}}^{1}} < 0 \quad \forall \, \boldsymbol{\mathcal{p}}_{\mathcal{A}}^{2} \Leftrightarrow \hat{\boldsymbol{\mathcal{p}}}_{\mathcal{A}}^{1} < \tilde{\boldsymbol{\mathcal{p}}}_{\mathcal{A}}^{1}$$

- Once uncertaintyis resolved, incumbent compite in allproducts, which yields to both prices remain constant or fall.

Model(5)

Pricing decision

Pricing decision of the incumbent if there is entry (3)

-...orto compete only in A, which may increaseprices for B. In this case, prices in thesecondperiod are set optimally so that:

- Whichrequiresthat:

Conclusion: incumbent reduce pricesforally roducts after announcement and, once uncertainty solved, it only competes in product A.

Database

Specialsurvey

Sample:

- 2weeks (Januaryandapril 2010).
- 30 basicproducts
- All supermarkets >2000 m²
- Stratifiedrandomsampleforretailers< 2000 m².

Methodology:

- Wegeorreferentiatedall supermarkets.
- Populationsurrounded supermarkets in a radius 250 to 1950 meters (distanceincrease by 50 meters).
- Numberofretailers in thoseradius (ownandrivals).

Geographical analysis of retailers

Characteristics:

- 1. Citieswithpopulation> 15,000 inhabitants (10 out of 21 cities; 90% population).
- 2. Total retailers: 760.
- 3. Sample= 112+4 (LIDL). Itis 15% of total population. Sampled error < 5%
- 4. Red points are sampledretailers.

How to calculate data on 'relevant' market?

Comments:

- 1. We use censusdelineation(eachblacklines)
- 2. Assumption: uniformdistributionofpopulation.
- 3. Weighteddistributionofpopulationd ependingonsurface.
- 4. Populationanalized by 50 meters (from 250 to 1950).

Example: North-westzoneof capital (Las Palmas de G.C.)

How to calculate 'geographical' competition?

Comments:

- 1. Weobtainnumberofrivals in X meters.
- Officialcensuswasused.
- Wegeorreferentiatedbothsamp led (116) andnotsampled supermarkets (644).
- 4. In this example, big points are sampled supermarkets.
- 5. Competitionradiusobtainedfro m 250 to 1000 meters.

Example: North-westzoneof capital (Las Palmas de G.C.)

The sample

Total populationandsampled supermarkets

Size	Number of supermarkets	Sample	Percentage of supermarkets analyzed
Less than 120 m ²	341	41	12%
Between 120 and 399 m^2	208	23	11%
Between 400 and 999 m^2	68	6	8.8%
More than 1000 m^2	51	49	96%
Total	668	119	18%

Graphical explanation of entry

Fittedquadraticequationstochange in pricesvsdistanceto LIDL

Graphical explanation of entry (2)

Statisticalanalysis

- Firstpricesforallgoodsnormalized by the average priceforthesamegood prior toentry.
- Comparativeresultsofpriceindex (normalized) before/afterentry:

	Is there a LIDL less than 0.5 kms?		
		No	Yes
$\left rac{ ext{product}}{ ext{LIDL?}} \right $	No	-2 %	+7 %
Is this proposed by L	Yes	+3 %	+5 %

Econometrical analysis

- Are these differences among supermarkets close to and faraway from LIDL statistically significant?
- Equation:

$$\ln(\rho_{ij}^{1}) - \ln(\rho_{ij}^{0}) = \beta_{0} + \beta_{1} \text{ProductnotsoldbyLidl}_{i} + \beta_{2} \text{LidlinXmeters}_{j} + \beta_{3} \text{Prod*Lidlin}_{ij} + \beta_{4} \text{PopulationinXmeters}_{j} + \sum_{h=1}^{11} \beta_{h} \text{City} + \sum_{l=1}^{5} \beta_{l} \text{Supermsize}_{j}$$

 $-p_{ij}$ = priceproducti at supermarket j in period 1 or 0. *ProductnotsoldbyLidl*is a binary variable thattakesvalue 1 iftheproductisnotsold by entrant.

- -Prod*Lidlinisthedif-in-difestimator.
- -Population, citiesand supermarket size are included.

Econometrical analysis

• Estimationresults:

Distance (meters)	Product not sold by LIDL	LIDL near in X meters	Interaction	Constant
500	0.043***	-0.031	0.125**	-0.033
750	0.037**	0.015	0.126**	-0.033
1000	0.039**	0.008	0.086**	-0.035
1250	0.039**	-0.011	0.059**	-0.035
1500	0.039**	-0.003	0.056*	-0.039
1750	0.042**	-0.008	0.036	-0.034
1950	0.043**	-0.009	0.032	-0.034
Number observations	2631	R^2 (Average)	0.019	

Conclusions

- 1. Worldwide (and especially in Spain) there are strict regulations in the supermarket industry (entry regulation).
- 2. Supermarkets have been analyzed from several perspectives.
- 3. Incumbents near to new entry supermarkets reduce prices before entrant starts.
- 4. For the goods not sold by the entrant, prices rose by close 9% after entry. The same did not occur for goods sold by the entrant.
- 5.1.5 kms. seems to be a reasonable cut-off point for the definition of relevant market.